Factors affecting physiological constants in Simmental and Simbrah cattle in western Mexico
DOI:
https://doi.org/10.29059/cvpa.v2i2.26Keywords:
thermoregulation, beef cattle, respiratory rateAbstract
Heat stress is a disadvantage for livestock production in tropical climates. Temperature is not the only parameter that modifies physiological constants. In Mexico, Simmental and Simbrah breeds contribute to national beef production in different agroecological zones, therefore it is important to evaluate the environmental factors that modify the main physiological constants in Simmental and Simbrah animals in western Mexico. A total of 341 specimens distributed in 6 production units were used. There were 147 specimens of Simmental breed and 194 of Simbrah breed, males and females with an average age of 18 months. Respiratory Rate (RR), Heart Rate (HR), Rectal Temperature (RT) and ITH levels were measured in the months of June and July of 2018 and 2019. Danger levels of ITH were present in both measurements (morning and afternoon). Statistical analysis of physiological values was performed by repeated measures analysis of variance using PROC MIXED of SAS, version 9.4. Mean comparison was performed with Fisher's protected t test for multiple comparisons. Comparison of means was performed with Fisher's protected t multiple comparisons test. The effects of year and month presented differences in the constants having higher measurement of FC in the year 2018 and higher measurement in the TR and FR in the month of July. The effect of age and ITH presented significant statistical differences (p < 0.05) for RT, HR and RR. The physiological constants of cattle are affected by the degree of difference in ITH observed at different times (morning and afternoon) associated with the implementation of thermoregulatory mechanisms.
References
Amamou, H., Beckers, Y., & Mahouachi, M. (2019). Thermotolerance indicators related to production and physiological responses to heat stress of Holstein cows. Journal of Thermal Biology, 82, 90-98. https://doi.org/10.1016/j.jtherbio.2019.03.016. DOI: https://doi.org/10.1016/j.jtherbio.2019.03.016
Asociación Simmental Simbrah Mexicana. (2020). 35 años de verdaderos propósitos de la Asociación Simmental Simbrah Mexicana. Impresos tecnográficos SA de CV.
Bharati, J., Dangi, S., Bag, S., Maurya, V., Singh, G., Kumar, P., & Sarkar, M. (2017). Expression dynamics of HSP90 and nitric oxide synthase (NOS) isoforms during heat stress acclimation in Tharparkar cattle. International Journal of Biometeorology, 61(8), 1461-1469. https://doi.org/10.1007/s00484-017-1323-3 DOI: https://doi.org/10.1007/s00484-017-1323-3
Cardoso, C., Peripolli, V., Amador, S., Brandão, E., Esteves, G., Sousa, C., França, M., Gonçalves, F., Barbosa, F., Montalvão, T., Martins, C., Neto, A. F., & McManus, C. (2015). Physiological and thermographic response to heat stress in zebu cattle. Livestock Science, 182, 83-92. https://doi.org/10.1016/j.livsci.2015.10.022 DOI: https://doi.org/10.1016/j.livsci.2015.10.022
Gantner, V., Bobić, T., Gregić., Gantner, R., Kuterovac, K., & Potočnik, K. (2017). The differences in heat stress resistance due to dairy cattle breed. Mljekarstvo, 67(2), 112–122. https://doi.org/10.15567/mljekarstvo.2017.0203 DOI: https://doi.org/10.15567/mljekarstvo.2017.0203
Hooper, H. B., Titto, C. G., Gonella-Diaza, A. M., Henrique, F. L., Pulido-Rodríguez, L. F., Longo, A. L. S., Da Cunha Leme-Dos-Santos, T. M., De Mira Geraldo, A. C. A. P., Pereira, A. M. F., Binelli, M., De Carvalho Balieiro, J. C., & Titto, E. A. L. (2018). Heat loss efficiency and HSPs gene expression of Nellore cows in tropical climate conditions. International Journal of Biometeorology, 63(11), 1475-1486. https://doi.org/10.1007/s00484-018-1576-5 DOI: https://doi.org/10.1007/s00484-018-1576-5
Idris, M., Uddin, J., Sullivan, M., McNeill, D. M., & Phillips, C. J. C. (2021). Non-invasive physiological indicators of heat stress in cattle. Animals, 11(1), 71. https://doi.org/10.3390/ani11010071 DOI: https://doi.org/10.3390/ani11010071
Jeelani, R., Konwar, D., Khan, A., Kumar, D., Chakraborty, D., & Brahma, B. (2019). Reassessment of temperature-humidity index for measuring heat stress in crossbred dairy cattle of a sub-tropical region. Journal of Thermal Biology, 82, 99-106. https://doi.org/10.1016/J.JTHERBIO.2019.03.017 DOI: https://doi.org/10.1016/j.jtherbio.2019.03.017
Luceño, N. L., De Souza Ramos Angrimani, D., De Cássia Bicudo, L., Szymańska, K. J., Van Poucke, M., Demeyere, K., Meyer, E., Peelman, L., Mullaart, E., Broekhuijse, M. L., & Van Soom, A. (2019). Exposing dairy bulls to high temperature-humidity index during spermatogenesis compromises subsequent embryo development in vitro. Theriogenology, 141, 16-25. https://doi.org/10.1016/j.theriogenology.2019.08.034 DOI: https://doi.org/10.1016/j.theriogenology.2019.08.034
López, R., Pinto-Santini, L., Perozo, D., Pineda, J., Oliveros, I., Chacón, T., Rossini, M., & De Álvarez, L. R. (2015). Confort térmico y crecimiento de corderas West African pastoreando con y sin acceso a sombra artificial. Archivos de Zootecnia, 64(246), 139-146. https://doi.org/10.21071/az.v64i246.388 DOI: https://doi.org/10.21071/az.v64i246.388
Luo, H., Li, X., Hu, L., Xu, W., Chu, Q., Liu, A., Guo, G., Liu, L., Brito, L. F., & Wang, Y. (2021). Genomic analyses and biological validation of candidate genes for rectal temperature as an indicator of heat stress in Holstein cattle. Journal of Dairy Science, 104(4), 4441-4451. https://doi.org/10.3168/jds.2020-18725 DOI: https://doi.org/10.3168/jds.2020-18725
Mateescu, R. G., Sarlo-Davila, K. M., Dikmen, S., Rodriguez, E., & Oltenacu, P. A. (2020). The effect of Brahman genes on body temperature plasticity of heifers on pasture under heat stress. Journal of Animal Science, 98(5). https://doi.org/10.1093/jas/skaa126 DOI: https://doi.org/10.1093/jas/skaa126
Utrera, Á., Velázquez, G., Chagoya, R., Bermúdez, M., & Murillo, V. (2021). Beef cattle genetic improvement research at the INIFAP: accomplishments, challenges and perspective. .
SAS. Statistical Analysis System. (2024). SAS User’s guide. SAS/STAT R, Version 9.4. Cary, NC, USA; SAS Institute Inc.
Velayudhan, S. M., Brügemann, K., Alam, S., Yin, T., Devaraj, C., Sejian, V., Schlecht, E., & König, S. (2022). Molecular, physiological and hematological responses of crossbred dairy cattle in a tropical savanna climate. Biology, 12(1), 26. https://doi.org/10.3390/biology12010026 DOI: https://doi.org/10.3390/biology12010026
Vieira, R., Louvandini, H., Barcellos, J., Martins, C. F., & McManus, C. (2022). Path and logistic analysis for heat tolerance in adapted breeds of cattle in Brazil. Livestock Science, 258, 104888. https://doi.org/10.1016/j.livsci.2022.104888 DOI: https://doi.org/10.1016/j.livsci.2022.104888

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ciencias Veterinarias y Producción Animal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Accepted 2025-01-28
Published 2025-01-31